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LETTER TO THE EDITOR

Notes on the structure of thed-function interacting gas.
Intertwining operator in the degenerate affine Hecke
algebra
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Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo,
Tokyo 113, Japan
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Abstract. The wavefunction of thé-function interacting Bose gas on the infinite interval is
studied. By introducing the intertwining operator of the degenerate affine Hecke algebra, the
non-symmetric eigenfunction of the Dunkl operator is constructed.

1. Introduction

The one-dimensional quantuN-body Bose gas with &-function potential is an old
problem, and has received much attention since the 1960s [1-3]. The Hamiltonian is given

by

N
H=-) "+2 Y 8 —x)) @)
i=1 1<i<j<N
where 9, = % andc is a constant. We note that there are no bound states when the

interaction is repulsive > 0. The nonlinear Scbdinger (NLS) model is integrable and
exactly solvable. In solving the NLS model, the boundary condition becomes important.
When the system is periodic [1-3], we can apply both the Bethe ansatz method and the
finite-size corrections with help of the conformal field theory, and consequently obtain
the critical exponents of the correlation functions [4, 5]. On the other hand, the situation
differs when the system has an infinite volume [6]. It has also appeared [7, 8] that in an
infinite volume a certain set of the differential-difference operators helps us to investigate
the algebraic structure of the model (1). This set of operators was originally introduced in
studies of the one-dimensional quantum integrable systems with inverse square interactions
(the Calogero—Sutherland—Moser (CSM) model) [9-11], and has recently [12] been called
the Dunkl operator. The simultaneous eigenfunctions of the CSM’s Dunkl operators are
called thenon-symmetridack polynomials [13-15], and it is known that the eigenfunction of
the CSM model is given by theymmetricJack polynomials, which are the symmetrization
of the non-symmetricJack polynomials.

In this letter, motivating the result in the case of the CSM model, we shall construct
the non-symmetriceigenfunction of theS-function interacting Bose gas (1). We give two
representations for the degenerate affine Hecke algebra, and introduce the ‘intertwining
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operator’. As the Dunkl operator for the NLS model is intertwined with a partial differential
operator (a momentum operator), one sees that the eigenfunction is not polynomial but a
superposition of plain waves.

2. Degenerate affine Hecke algebra
We introduce the Dunkl operat@?g i=12...,N) for the NLS model (1) [7, 8] as

d; = =it +15 ) (e(x =) = D +i5 Y (60 —x) + Dy (2)

j<i Jj>i

Here a functiore(x) denotes a signature af

) +1 forx >0 3
eEWX) =
-1 forx < 0.

Operators; ; exchanges coordinates of th# and thejth particles, and satisfies
)C,‘S'\,"j = §,‘7ij.

For our latter convention we sét = §; ;41 for j =1,2,..., N — 1. One sees that these

operators satisfy the following identities;
[d;.d}] =0 (42)
§jz =1 (4b)
§j8j+18j = 8j418;8j41 (4)
[di.51=0  forizj j+1 (4d)
§j‘?j - dAj+1§j =ic. (49)

These relations indicate that the operatp?,-s §5i11<i<N;1<j<N-—1}representthe
degenerate affine Hecke algebra defined by Drinfeld [16].

From the commutativity of the Dunkl operatoraj4we can define the quantum integrals
of motion by

N
T, =) @) )
i=1

wherern (-) indicates a projection onto a symmetric space, i.e. a bosonic space. The lowest
three conserved operators are computed as follows [8]

N

=) (-id) (6a)
i=1

r=H (6b)
N

Ts=Y (—i0)°+3c Y 8(x —x;)(—id; —id)). (6¢)
i=1 1<i<j<N

See that the Hamiltonian of the NLS model (1) is given from the Dunkl operators, and that
the integrals of motiorY,, commute with . This fact proves the quantum integrability of
the NLS model (1) in the Liouville sense.
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_As a preparation in constructing simultaneous eigenfunctions of the Dunkl operators
d; (2), we introduce the integral operato@; [17] (1 < i < N — 1) acting on arbitrary
functions f(x1, ..., xy) as

Xi—Xi+1

(Qif)(...,xi,xi+1,...):f(...,xi+1,xi,...)—c/0 FCo o xi—t xip1+1,...)0dr
)

The partial differential operatorsid; and the integral operatoré_,- satisfy the following
relations;

[—id;, —i;] =0 (8)
02=1 (8b)
QijJrle = Qj+1Qij+1 (8c)
[—i3i, 0;]=0 fori #j,j+1 (8d)
Q;(—i9)) — (=id; 1) Q; =1c. (8e)

One finds that the operatofs-io;, Q,-|1 <i < N;1<j< N -1} also constitute the
degenerate affine Hecke algebra.

As a result, we have two representations for the degenerate affine Hecke algebra, (4)
and (8), and there is a correspondence as follows

d; —id;

L=y A 9
Sj} { Q- @)
In the next section, we shall diagonalize the Dunkl opera(for(SZ). To this end, we shall

introduce the intertwining operator which maps tten-local differential-difference operator
d; onto thelocal differential operatorio;.

3. Eigenfunction

We shall diagonalize the Dunkl operatats(2) with a non-symmetric function (x):

diyr(x) = ki (x) fori=12....,N (10)
where k; corresponds to the quasimomentum of tile particle. We assume that the
wavefunction ¢ (x) = ¥ (xy,...,xy) is continuous inx € RY. We note that the

eigenfunctiomy (x) is in fact non-symmetridn its arguments:, and that the eigenfunction
W (x) of the NLS model (1) is then given by symmetriziggx);

W (x) = Sym(ys (x)). (11)

As a functiony (x) satisfies the eigenvalue problem (10) with the Dunkl operator (2),
the symmetriceigenfunction¥ (x) becomes a simultaneous eigenfunction of the quantum
integrals of motiorz, (5),

In“y(x) = E,I\IJ(.X) (lza)
N
i=1

We first consider the two-body cage = 2 for simplicity. We set thexon-symmetric
eigenfunctiony (x1, x2) of d; andd, as

Y(x1, x2) = 0(x1 < x2)¥1(x1, X2) + 0 (x2 < x1)¥2(x1, x2) (13)
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wheref (X) denotes

1 if X is true

0(X) =
0 0 if X is false.

By substituting (13) into eigenvalue problems (10), we obtain [8] that each fungti@nd
¥, has a form,
Y1 (xy, xp) = elrmtikere (14a)
kl — k2 — iceik1x1+ikzx2 + iC eik1xz+ik2)(1' (14b)
k1 — k2 k1 — ko
The purpose of this letter is based on the observation that the two-body wavefunction
¥ (x1, x2) is written in a simple form with the integral operato; (7) as

¥ (x1, x2) = (B(x1 < x2) + 0(x2 < x1)§101)dhrtikerz, (15)

As a generalization to th&/-body case, we find that the eigenfunction of the Dunkl
operators is given by

Ya(x1, x2) =

N
¥ (x) = Vexp(Zikixl) (16)
i=1
whereV is called the intertwining operator defined by
‘7 = Z 9(xw-1(1) < e < .Xw—l(N)).ew—le. (17)
weSy

Here w is the reduced decomposition in terms of the elementary transposition of each
element ofSy, ands,-: and Q,, respectively denotes as

St =81, . 880 0uw=0,0i...0i,
where 1< iy, i, ...,i, < N — 1. This form of the wavefunction shows that the integral
operatorQ; (7) represents the scattering matrix betweenitheand(i + 1)th particles, and
the braid relation (8 is based on that the scattering matrix of the NLS model satisfies the
Yang—Baxter relation which indicates the integrability of the model [18].

The fact that a function (16) becomes an eigenfunction of the Dunkl operator could be

given by proving an identity,

diV = V(=id,). (18)
The operatorV intertwines the two representations of the degenerate affine Hecke algebra,
(4) and (8). We thus obtained the operaior which intertwines theS-function gas and
free particle systems. The proof of (18) is rather straightforward. We recall that the Dunkl
operatord; (2) is written as

ds = —id; —ic Yy (. )5ub((x, @) < 0). )

a>0

Here we use& = ¢ for1 <i < N, andx = Zf’zlxiei with basese; of RY. A set of
positive rootsR is defined asR; = {¢; —¢;|1 <i < j < N}, ando > 0 meansx € R,.
The inner product is defined ds;, €;) = §;;. As the operatorsﬁ,» and —id; constitute the
degenerate affine Hecke algebra, we have [13]

Qu(=10:) Q1 = —idye —ic Y (W, @) Q. (19)

a>0
wla<0
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Further, we note that
i) (xr <x2<---<xn)=(8(x; —xi—1) —8(x; —xi4))O( .. < Xj_1 < Xjg1 < --°)

(20)
8(x; — Xiy1) Qi = 5. (21)

Using relations (19)—(21) and a definition’)2f the Dunkl operator, we obtain an
intertwining relation (18).

As we find that the Dunkl operatak (2) is intertwined with a momentum operateid;
by the operato’ (18), thenon-symmetriavavefunctiony (x) is given by a superposition
of plain waves, ex@) . ik;x;). We note that the symmetrized eigenfunctidtix) (11), as
an eigenfunction of the conserved operatfyg12), is then given by

N
W(x) = Z Ow exp(Z ikixi)
w i=1
N
= c(wk) exp(z ikwix,) (22)
w i=1

where

(k, ) +ic
c(k) = ]_R[ TRIEE

See the appendix for explicit forms of the wavefunctigng) and W (x) up toN = 3.
4. Concluding remarks
We have defined the intertwining operattzfr (18) for the s-function interacting gas; the

operatorV intertwines the Dunkl operatoul and the partial differential operatorio;,
which are two different representations of the degenerate affine Hecke algebra as shown in

(4) and (8).
We recall that the intertwining operator for the CSM model was studied in [19];
TiVe = Veoi (23)
where7; is the Dunkl operator for the rational Calogero model,
. Yool
T, =9 +CZ 1-5)). (24)
=1 Xi — Xj
J#

The explicit form of the intertwining operatdrc is rather complicated [19]. It should be
noted that, while our Dunkl operatots (2) for the NLS model constitute the degenerate
affine Hecke algebra, the original Dunkl operafpis not a representation of the degenerate
affine Hecke algebra.

The eigenfunctions for the NLS model associated with the root systems ofBtygred
type-G [20, 8, 21] could be constructed in the same manner. The lattice analogue of the
NLS model [22] could be studied by considering a deformation of the integral operator (7).
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Appendix. Explicit form of eigenfunctions

To clarify the notations in this letter, we give the explicit wavefunctigr(s) and ¥ (x) for
simple casesy = 2 andN = 3. Thenon-symmetrievavefunctiony (x) is an eigenfunction

of the Dunkl operatoﬁ,- (2) as in (10), and theymmetridunction ¥ (x) is a symmetrization

of ¢ (x) and becomes an eigenfunction of the bosonic NLS model (1). Hereafter we use a
scattering functior§(i, j) and the plain wave (i1, iz, i3, ...) as

kl‘ — k + iC
SG, j) = —>L— Al
@, J) =k (A1)
x (i1, i2,13,...) = exp(iklxil =+ ikzxiz + ikgxi3 + ). (A2)

() N=2
e non-symmetric function;

Y(x) = (0(x1 < x2) + 0(x2 < x1)§101)x (1, 2).
e Symmetric function;
W) =S1,2x1,2+S2 Dx2 1.

(i) N =3
e non-symmetric function;

Y (x) = (B(x1 < x2 < x3) + O(x2 < x1 < x3)5101 +0(x1 < x3 < x2)5202
+0(x2 < x3 < x1)51520201 + 0 (x3 < x1 < x2)52§1010>
+0(x3 < X2 < x1)$15281010201)x (1, 2, 3).
e Symmetric function;
Y(x)=S5(1,28(1,3)S52,3)x(1,2,3)+S5S2,1DS(1,3)S(2,3)x(2,1,3)
+5(1,2)5(1,3)8S3,2x(1,3,2)+ 52, 1)S3,1)S2,3)x(3,1, 2
+5(1,28B, DSAB,2)x(2,3, )+ 52, 1DSB, 1S3, 2x(3,2,1).
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