Notes on the structure of the δ-function interacting gas. Intertwining operator in the degenerate affine Hecke algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1998 J. Phys. A: Math. Gen. 31 L85
(http://iopscience.iop.org/0305-4470/31/4/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:13

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Notes on the structure of the δ-function interacting gas. Intertwining operator in the degenerate affine Hecke algebra

Kazuhiro Hikami \dagger
Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113, Japan

Received 4 November 1997, in final form 5 December 1997

Abstract

The wavefunction of the δ-function interacting Bose gas on the infinite interval is studied. By introducing the intertwining operator of the degenerate affine Hecke algebra, the non-symmetric eigenfunction of the Dunkl operator is constructed.

1. Introduction

The one-dimensional quantum N-body Bose gas with a δ-function potential is an old problem, and has received much attention since the 1960s [1-3]. The Hamiltonian is given by

$$
\begin{equation*}
\mathcal{H}=-\sum_{i=1}^{N} \partial_{i}^{2}+2 c \sum_{1 \leqslant i<j \leqslant N} \delta\left(x_{i}-x_{j}\right) \tag{1}
\end{equation*}
$$

where $\partial_{i}=\frac{\partial}{\partial x_{i}}$, and c is a constant. We note that there are no bound states when the interaction is repulsive $c>0$. The nonlinear Schrödinger (NLS) model is integrable and exactly solvable. In solving the NLS model, the boundary condition becomes important. When the system is periodic [1-3], we can apply both the Bethe ansatz method and the finite-size corrections with help of the conformal field theory, and consequently obtain the critical exponents of the correlation functions [4,5]. On the other hand, the situation differs when the system has an infinite volume [6]. It has also appeared [7, 8] that in an infinite volume a certain set of the differential-difference operators helps us to investigate the algebraic structure of the model (1). This set of operators was originally introduced in studies of the one-dimensional quantum integrable systems with inverse square interactions (the Calogero-Sutherland-Moser (CSM) model) [9-11], and has recently [12] been called the Dunkl operator. The simultaneous eigenfunctions of the CSM's Dunkl operators are called the non-symmetric Jack polynomials [13-15], and it is known that the eigenfunction of the CSM model is given by the symmetric Jack polynomials, which are the symmetrization of the non-symmetric Jack polynomials.

In this letter, motivating the result in the case of the CSM model, we shall construct the non-symmetric eigenfunction of the δ-function interacting Bose gas (1). We give two representations for the degenerate affine Hecke algebra, and introduce the 'intertwining
\dagger E-mail address: hikami@phys.s.u-tokyo.ac.jp
operator'. As the Dunkl operator for the NLS model is intertwined with a partial differential operator (a momentum operator), one sees that the eigenfunction is not polynomial but a superposition of plain waves.

2. Degenerate affine Hecke algebra

We introduce the Dunkl operator $\hat{d}_{i}(i=1,2, \ldots, N)$ for the NLS model (1) [7, 8] as

$$
\begin{equation*}
\hat{d}_{i}=-\mathrm{i} \partial_{i}+\mathrm{i} \frac{c}{2} \sum_{j<i}\left(\varepsilon\left(x_{i}-x_{j}\right)-1\right) \hat{s}_{i, j}+\mathrm{i} \frac{c}{2} \sum_{j>i}\left(\varepsilon\left(x_{i}-x_{j}\right)+1\right) \hat{s}_{i, j} \tag{2}
\end{equation*}
$$

Here a function $\varepsilon(x)$ denotes a signature of x,

$$
\varepsilon(x)= \begin{cases}+1 & \text { for } x>0 \tag{3}\\ -1 & \text { for } x<0\end{cases}
$$

Operator $\hat{s}_{i, j}$ exchanges coordinates of the i th and the j th particles, and satisfies

$$
x_{i} \hat{s}_{i, j}=\hat{s}_{i, j} x_{j}
$$

For our latter convention we set $\hat{s}_{j} \equiv \hat{s}_{j, j+1}$ for $j=1,2, \ldots, N-1$. One sees that these operators satisfy the following identities;

$$
\begin{align*}
& {\left[\hat{d}_{i}, \hat{d}_{j}\right]=0} \tag{4a}\\
& \hat{s}_{j}^{2}=\mathbb{I I} \tag{4b}\\
& \hat{s}_{j} \hat{s}_{j+1} \hat{s}_{j}=\hat{s}_{j+1} \hat{s}_{j} \hat{s}_{j+1} \tag{4c}\\
& {\left[\hat{d}_{i}, \hat{s}_{j}\right]=0 \quad \text { for } i \neq j, j+1} \tag{4d}\\
& \hat{s}_{j} \hat{d}_{j}-\hat{d}_{j+1} \hat{s}_{j}=\mathrm{i} c . \tag{4e}
\end{align*}
$$

These relations indicate that the operators $\left\{\hat{d}_{i}, \hat{s}_{j} \mid 1 \leqslant i \leqslant N ; 1 \leqslant j \leqslant N-1\right\}$ represent the degenerate affine Hecke algebra defined by Drinfeld [16].

From the commutativity of the Dunkl operators (4a), we can define the quantum integrals of motion by

$$
\begin{equation*}
\mathcal{I}_{n}=\sum_{i=1}^{N} \pi\left(\hat{d}_{i}^{n}\right) \tag{5}
\end{equation*}
$$

where $\pi(\cdot)$ indicates a projection onto a symmetric space, i.e. a bosonic space. The lowest three conserved operators are computed as follows [8]

$$
\begin{align*}
& \mathcal{I}_{1}=\sum_{i=1}^{N}\left(-\mathrm{i} \partial_{i}\right) \tag{6a}\\
& \mathcal{I}_{2}=\mathcal{H} \tag{6b}\\
& \mathcal{I}_{3}=\sum_{i=1}^{N}\left(-\mathrm{i} \partial_{i}\right)^{3}+3 c \sum_{1 \leqslant i<j \leqslant N} \delta\left(x_{i}-x_{j}\right)\left(-\mathrm{i} \partial_{i}-\mathrm{i} \partial_{j}\right) . \tag{6c}
\end{align*}
$$

See that the Hamiltonian of the NLS model (1) is given from the Dunkl operators, and that the integrals of motion \mathcal{I}_{n} commute with \mathcal{H}. This fact proves the quantum integrability of the NLS model (1) in the Liouville sense.

As a preparation in constructing simultaneous eigenfunctions of the Dunkl operators \hat{d}_{i} (2), we introduce the integral operators \hat{Q}_{i} [17] ($1 \leqslant i \leqslant N-1$) acting on arbitrary functions $f\left(x_{1}, \ldots, x_{N}\right)$ as

$$
\begin{equation*}
\left(\hat{Q}_{i} f\right)\left(\ldots, x_{i}, x_{i+1}, \ldots\right)=f\left(\ldots, x_{i+1}, x_{i}, \ldots\right)-c \int_{0}^{x_{i}-x_{i+1}} f\left(\ldots, x_{i}-t, x_{i+1}+t, \ldots\right) \mathrm{d} t \tag{7}
\end{equation*}
$$

The partial differential operators $-\mathrm{i} \partial_{i}$ and the integral operators \hat{Q}_{j} satisfy the following relations;

$$
\begin{align*}
& {\left[-\mathrm{i} \partial_{i},-\mathrm{i} \partial_{j}\right]=0} \tag{8a}\\
& \hat{Q}_{j}^{2}=\mathbb{I} \tag{8b}\\
& \hat{Q}_{j} \hat{Q}_{j+1} \hat{Q}_{j}=\hat{Q}_{j+1} \hat{Q}_{j} \hat{Q}_{j+1} \tag{8c}\\
& {\left[-\mathrm{i} \partial_{i}, \hat{Q}_{j}\right]=0 \quad \text { for } i \neq j, j+1} \tag{8d}\\
& \hat{Q}_{j}\left(-\mathrm{i} \partial_{j}\right)-\left(-\mathrm{i} \partial_{j+1}\right) \hat{Q}_{j}=\mathrm{i} c . \tag{8e}
\end{align*}
$$

One finds that the operators $\left\{-\mathrm{i} \partial_{i}, \hat{Q}_{j} \mid 1 \leqslant i \leqslant N ; 1 \leqslant j \leqslant N-1\right\}$ also constitute the degenerate affine Hecke algebra.

As a result, we have two representations for the degenerate affine Hecke algebra, (4) and (8), and there is a correspondence as follows

$$
\left.\begin{array}{c}
\hat{d}_{i} \tag{9}\\
\hat{s}_{j}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
-\mathrm{i} \partial_{i} \\
\hat{Q}_{j}
\end{array}\right.
$$

In the next section, we shall diagonalize the Dunkl operators \hat{d}_{i} (2). To this end, we shall introduce the intertwining operator which maps the non-local differential-difference operator \hat{d}_{i} onto the local differential operator $-\mathrm{i} \partial_{i}$.

3. Eigenfunction

We shall diagonalize the Dunkl operators \hat{d}_{i} (2) with a non-symmetric function $\psi(x)$;

$$
\begin{equation*}
\hat{d}_{i} \psi(x)=k_{i} \psi(x) \quad \text { for } i=1,2, \ldots, N \tag{10}
\end{equation*}
$$

where k_{i} corresponds to the quasimomentum of the i th particle. We assume that the wavefunction $\psi(x) \equiv \psi\left(x_{1}, \ldots, x_{N}\right)$ is continuous in $x \in \mathbb{R}^{N}$. We note that the eigenfunction $\psi(x)$ is in fact non-symmetric in its arguments x, and that the eigenfunction $\Psi(x)$ of the NLS model (1) is then given by symmetrizing $\psi(x)$;

$$
\begin{equation*}
\Psi(x)=\operatorname{Sym}(\psi(x)) \tag{11}
\end{equation*}
$$

As a function $\psi(x)$ satisfies the eigenvalue problem (10) with the Dunkl operator (2), the symmetric eigenfunction $\Psi(x)$ becomes a simultaneous eigenfunction of the quantum integrals of motion \mathcal{I}_{n} (5),

$$
\begin{align*}
& \mathcal{I}_{n} \Psi(x)=E_{n} \Psi(x) \tag{12a}\\
& E_{n}=\sum_{i=1}^{N} k_{i}^{n} \tag{12b}
\end{align*}
$$

We first consider the two-body case $N=2$ for simplicity. We set the non-symmetric eigenfunction $\psi\left(x_{1}, x_{2}\right)$ of \hat{d}_{1} and \hat{d}_{2} as

$$
\begin{equation*}
\psi\left(x_{1}, x_{2}\right)=\theta\left(x_{1}<x_{2}\right) \psi_{1}\left(x_{1}, x_{2}\right)+\theta\left(x_{2}<x_{1}\right) \psi_{2}\left(x_{1}, x_{2}\right) \tag{13}
\end{equation*}
$$

where $\theta(X)$ denotes

$$
\theta(X)= \begin{cases}1 & \text { if } X \text { is true } \\ 0 & \text { if } X \text { is false }\end{cases}
$$

By substituting (13) into eigenvalue problems (10), we obtain [8] that each function ψ_{1} and ψ_{2} has a form,

$$
\begin{align*}
& \psi_{1}\left(x_{1}, x_{2}\right)=\mathrm{e}^{\mathrm{i} k_{1} x_{1}+\mathrm{i} k_{2} x_{2}} \tag{14a}\\
& \psi_{2}\left(x_{1}, x_{2}\right)=\frac{k_{1}-k_{2}-\mathrm{i} c}{k_{1}-k_{2}} \mathrm{e}^{\mathrm{i} k_{1} x_{1}+\mathrm{i} k_{2} x_{2}}+\frac{\mathrm{i} c}{k_{1}-k_{2}} \mathrm{e}^{\mathrm{i} k_{1} x_{2}+\mathrm{i} k_{2} x_{1}} \tag{14b}
\end{align*}
$$

The purpose of this letter is based on the observation that the two-body wavefunction $\psi\left(x_{1}, x_{2}\right)$ is written in a simple form with the integral operator $\hat{Q}_{i}(7)$ as

$$
\begin{equation*}
\psi\left(x_{1}, x_{2}\right)=\left(\theta\left(x_{1}<x_{2}\right)+\theta\left(x_{2}<x_{1}\right) \hat{s}_{1} \hat{Q}_{1}\right) \mathrm{e}^{\mathrm{i} k_{1} x_{1}+\mathrm{i} k_{2} x_{2}} \tag{15}
\end{equation*}
$$

As a generalization to the N-body case, we find that the eigenfunction of the Dunkl operators is given by

$$
\begin{equation*}
\psi(x)=\hat{V} \exp \left(\sum_{i=1}^{N} \mathrm{i} k_{i} x_{i}\right) \tag{16}
\end{equation*}
$$

where \hat{V} is called the intertwining operator defined by

$$
\begin{equation*}
\hat{V}=\sum_{w \in S_{N}} \theta\left(x_{w^{-1}(1)}<\cdots<x_{w^{-1}(N)}\right) \hat{s}_{w^{-1}} \hat{Q}_{w} \tag{17}
\end{equation*}
$$

Here w is the reduced decomposition in terms of the elementary transposition of each element of S_{N}, and $\hat{s}_{w^{-1}}$ and \hat{Q}_{w} respectively denotes as

$$
\hat{s}_{w^{-1}}=\hat{s}_{i_{p}} \ldots \hat{s}_{i_{2}} \hat{s}_{i_{1}} \quad \hat{Q}_{w}=\hat{Q}_{i_{1}} \hat{Q}_{i_{2}} \ldots \hat{Q}_{i_{p}}
$$

where $1 \leqslant i_{1}, i_{2}, \ldots, i_{p} \leqslant N-1$. This form of the wavefunction shows that the integral operator $\hat{Q}_{i}(7)$ represents the scattering matrix between the i th and $(i+1)$ th particles, and the braid relation $(8 c)$ is based on that the scattering matrix of the NLS model satisfies the Yang-Baxter relation which indicates the integrability of the model [18].

The fact that a function (16) becomes an eigenfunction of the Dunkl operator could be given by proving an identity,

$$
\begin{equation*}
\hat{d}_{i} \hat{V}=\hat{V}\left(-\mathrm{i} \partial_{i}\right) \tag{18}
\end{equation*}
$$

The operator \hat{V} intertwines the two representations of the degenerate affine Hecke algebra, (4) and (8). We thus obtained the operator \hat{V}, which intertwines the δ-function gas and free particle systems. The proof of (18) is rather straightforward. We recall that the Dunkl operator $\hat{d}_{i}(2)$ is written as

$$
\hat{d}_{\xi}=-\mathrm{i} \partial_{\xi}-\mathrm{i} c \sum_{\alpha>0}(\xi, \alpha) \hat{s}_{\alpha} \theta((x, \alpha)<0)
$$

Here we use $\xi=\epsilon_{i}$ for $1 \leqslant i \leqslant N$, and $x=\sum_{i=1}^{N} x_{i} \epsilon_{i}$ with bases ϵ_{i} of \mathbb{R}^{N}. A set of positive roots R_{+}is defined as $R_{+}=\left\{\epsilon_{i}-\epsilon_{j} \mid 1 \leqslant i<j \leqslant N\right\}$, and $\alpha>0$ means $\alpha \in R_{+}$. The inner product is defined as $\left(\epsilon_{i}, \epsilon_{j}\right)=\delta_{i j}$. As the operators \hat{Q}_{i} and $-\mathrm{i} \partial_{j}$ constitute the degenerate affine Hecke algebra, we have [13]

$$
\begin{equation*}
\hat{Q}_{w}\left(-\mathrm{i} \partial_{\xi}\right) \hat{Q}_{w^{-1}}=-\mathrm{i} \partial_{w \xi}-\mathrm{i} c \sum_{\substack{\alpha>0 \\ w^{-1} \alpha<0}}(w \xi, \alpha) \hat{Q}_{\alpha} . \tag{19}
\end{equation*}
$$

Further, we note that
$\left(\partial_{i} \theta\right)\left(x_{1}<x_{2}<\cdots<x_{N}\right)=\left(\delta\left(x_{i}-x_{i-1}\right)-\delta\left(x_{i}-x_{i+1}\right)\right) \theta\left(\ldots<x_{i-1}<x_{i+1}<\cdots\right)$
$\delta\left(x_{i}-x_{i+1}\right) \hat{Q}_{i}=\hat{s}_{i}$.
Using relations (19)-(21) and a definition (2') of the Dunkl operator, we obtain an intertwining relation (18).

As we find that the Dunkl operator $\hat{d}_{i}(2)$ is intertwined with a momentum operator $-\mathrm{i} \partial_{i}$ by the operator \hat{V} (18), the non-symmetric wavefunction $\psi(x)$ is given by a superposition of plain waves, $\exp \left(\sum_{i} \mathrm{i} k_{i} x_{i}\right)$. We note that the symmetrized eigenfunction $\Psi(x)$ (11), as an eigenfunction of the conserved operators \mathcal{I}_{n} (12), is then given by

$$
\begin{align*}
\Psi(x) & =\sum_{w} \hat{Q}_{w} \exp \left(\sum_{i=1}^{N} \mathrm{i} k_{i} x_{i}\right) \\
& =\sum_{w} c(w k) \exp \left(\sum_{i=1}^{N} \mathrm{i} k_{w_{i}} x_{i}\right) \tag{22}
\end{align*}
$$

where

$$
c(k)=\prod_{\alpha \in R_{+}} \frac{(k, \alpha)+\mathrm{i} c}{(k, \alpha)} .
$$

See the appendix for explicit forms of the wavefunctions $\psi(x)$ and $\Psi(x)$ up to $N=3$.

4. Concluding remarks

We have defined the intertwining operator $\hat{V}_{\hat{\prime}}$ (18) for the δ-function interacting gas; the operator \hat{V} intertwines the Dunkl operator \hat{d}_{j} and the partial differential operator $-\mathrm{i} \partial_{j}$, which are two different representations of the degenerate affine Hecke algebra as shown in (4) and (8).

We recall that the intertwining operator for the CSM model was studied in [19];

$$
\begin{equation*}
\hat{T}_{i} \hat{V}_{\mathrm{C}}=\hat{V}_{\mathrm{C}} \partial_{i} \tag{23}
\end{equation*}
$$

where \hat{T}_{i} is the Dunkl operator for the rational Calogero model,

$$
\begin{equation*}
\hat{T}_{i}=\partial_{i}+c \sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{1}{x_{i}-x_{j}}\left(1-\hat{s}_{i, j}\right) \tag{24}
\end{equation*}
$$

The explicit form of the intertwining operator \hat{V}_{C} is rather complicated [19]. It should be noted that, while our Dunkl operators \hat{d}_{i} (2) for the NLS model constitute the degenerate affine Hecke algebra, the original Dunkl operator \hat{T}_{i} is not a representation of the degenerate affine Hecke algebra.

The eigenfunctions for the NLS model associated with the root systems of type- B and type- $G[20,8,21]$ could be constructed in the same manner. The lattice analogue of the NLS model [22] could be studied by considering a deformation of the integral operator (7).

Acknowledgment

The author would like to thank Y Komori for useful discussions.

Appendix. Explicit form of eigenfunctions

To clarify the notations in this letter, we give the explicit wavefunctions $\psi(x)$ and $\Psi(x)$ for simple cases, $N=2$ and $N=3$. The non-symmetric wavefunction $\psi(x)$ is an eigenfunction of the Dunkl operator $\hat{d}_{i}(2)$ as in (10), and the symmetric function $\Psi(x)$ is a symmetrization of $\psi(x)$ and becomes an eigenfunction of the bosonic NLS model (1). Hereafter we use a scattering function $S(i, j)$ and the plain wave $\chi\left(i_{1}, i_{2}, i_{3}, \ldots\right)$ as

$$
\begin{align*}
& S(i, j)=\frac{k_{i}-k_{j}+\mathrm{i} c}{k_{i}-k_{j}} \tag{A1}\\
& \chi\left(i_{1}, i_{2}, i_{3}, \ldots\right)=\exp \left(\mathrm{i} k_{1} x_{i_{1}}+\mathrm{i} k_{2} x_{i_{2}}+\mathrm{i} k_{3} x_{i_{3}}+\cdots\right) \tag{A2}
\end{align*}
$$

(i) $N=2$

- non-symmetric function;

$$
\psi(x)=\left(\theta\left(x_{1}<x_{2}\right)+\theta\left(x_{2}<x_{1}\right) \hat{s}_{1} \hat{Q}_{1}\right) \chi(1,2) .
$$

- Symmetric function;

$$
\Psi(x)=S(1,2) \chi(1,2)+S(2,1) \chi(2,1)
$$

(ii) $N=3$

- non-symmetric function;

$$
\begin{aligned}
\psi(x)=\left(\theta \left(x_{1}\right.\right. & \left.<x_{2}<x_{3}\right)+\theta\left(x_{2}<x_{1}<x_{3}\right) \hat{s}_{1} \hat{Q}_{1}+\theta\left(x_{1}<x_{3}<x_{2}\right) \hat{s}_{2} \hat{Q}_{2} \\
& +\theta\left(x_{2}<x_{3}<x_{1}\right) \hat{s}_{1} \hat{s}_{2} \hat{Q}_{2} \hat{Q}_{1}+\theta\left(x_{3}<x_{1}<x_{2}\right) \hat{s}_{2} \hat{s}_{1} \hat{Q}_{1} \hat{Q}_{2} \\
& \left.+\theta\left(x_{3}<x_{2}<x_{1}\right) \hat{s}_{1} \hat{s}_{2} \hat{s}_{1} \hat{Q}_{1} \hat{Q}_{2} \hat{Q}_{1}\right) \chi(1,2,3) .
\end{aligned}
$$

- Symmetric function;

$$
\begin{aligned}
\Psi(x)=S(1,2) & S(1,3) S(2,3) \chi(1,2,3)+S(2,1) S(1,3) S(2,3) \chi(2,1,3) \\
+ & S(1,2) S(1,3) S(3,2) \chi(1,3,2)+S(2,1) S(3,1) S(2,3) \chi(3,1,2) \\
+ & S(1,2) S(3,1) S(3,2) \chi(2,3,1)+S(2,1) S(3,1) S(3,2) \chi(3,2,1) .
\end{aligned}
$$

References

[1] Yang C N 1967 Phys. Rev. Lett. 191312
[2] Lieb E H and Liniger W 1963 Phys. Rev. 1301605
[3] Flicker M and Lieb E H 1967 Phys. Rev. 161179
[4] Kawakami N and Yang S-K 1991 Prog. Theor. Phys. Suppl. 106157
[5] Schlottmann P 1994 J. Phys.: Condens. Matter 61359
[6] Faddeev L D 1980 Sov. Sci. Rev. Sec. C: Math. Phys. 1107
[7] Murakami S and Wadati M 1996 J. Phys. A: Math. Gen. 297903
[8] Komori Y and Hikami K 1997 Int. J. Mod. Phys. A 125397
[9] Polychronakos A P 1992 Phys. Rev. Lett. 69703
[10] Bernard D, Gaudin M, Haldane F D M and Pasquier V 1993 J. Phys. A: Math. Gen. 265219
[11] Hikami K 1996 J. Phys. A: Math. Gen. 292135
[12] Dunkl C F 1989 Trans. Am. Math. Soc. 311167
[13] Opdam E M 1995 Acta Math. 17575
[14] Cherednik I 1994 Math. Res. Lett. 1319
[15] Macdonald I G 1994-95 Séminaire Bourbaki 7971
[16] Drinfeld V G 1986 Funct. Annal. Appl. 2058
[17] Heckman G J and Opdam E M 1997 Ann. Math. 145139
[18] Zamolodchikov A B and Zamolodchikov A B 1979 Ann. Phys. 120253
[19] Dunkl C F 1995 Trans. Am. Math. Soc. 3473347
Dunkl C F Monatsh. Math. to appear

Letter to the Editor

[20] Gaudin M 1971 Phys. Rev. A 4386
[21] Komori Y and Hikami K 1997 J. Phys. A: Math. Gen. 301913
[22] Hikami K and Murakami S 1996 Phys. Lett. A 221109

