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LETTER TO THE EDITOR

Notes on the structure of theδ-function interacting gas.
Intertwining operator in the degenerate affine Hecke
algebra

Kazuhiro Hikami†
Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo,
Tokyo 113, Japan
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Abstract. The wavefunction of theδ-function interacting Bose gas on the infinite interval is
studied. By introducing the intertwining operator of the degenerate affine Hecke algebra, the
non-symmetric eigenfunction of the Dunkl operator is constructed.

1. Introduction

The one-dimensional quantumN -body Bose gas with aδ-function potential is an old
problem, and has received much attention since the 1960s [1–3]. The Hamiltonian is given
by

H = −
N∑
i=1

∂2
i + 2c

∑
16i<j6N

δ(xi − xj ) (1)

where ∂i = ∂
∂xi

, and c is a constant. We note that there are no bound states when the
interaction is repulsivec > 0. The nonlinear Schrödinger (NLS) model is integrable and
exactly solvable. In solving the NLS model, the boundary condition becomes important.
When the system is periodic [1–3], we can apply both the Bethe ansatz method and the
finite-size corrections with help of the conformal field theory, and consequently obtain
the critical exponents of the correlation functions [4, 5]. On the other hand, the situation
differs when the system has an infinite volume [6]. It has also appeared [7, 8] that in an
infinite volume a certain set of the differential-difference operators helps us to investigate
the algebraic structure of the model (1). This set of operators was originally introduced in
studies of the one-dimensional quantum integrable systems with inverse square interactions
(the Calogero–Sutherland–Moser (CSM) model) [9–11], and has recently [12] been called
the Dunkl operator. The simultaneous eigenfunctions of the CSM’s Dunkl operators are
called thenon-symmetricJack polynomials [13–15], and it is known that the eigenfunction of
the CSM model is given by thesymmetricJack polynomials, which are the symmetrization
of the non-symmetricJack polynomials.

In this letter, motivating the result in the case of the CSM model, we shall construct
the non-symmetriceigenfunction of theδ-function interacting Bose gas (1). We give two
representations for the degenerate affine Hecke algebra, and introduce the ‘intertwining
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operator’. As the Dunkl operator for the NLS model is intertwined with a partial differential
operator (a momentum operator), one sees that the eigenfunction is not polynomial but a
superposition of plain waves.

2. Degenerate affine Hecke algebra

We introduce the Dunkl operator̂di (i = 1, 2, . . . , N) for the NLS model (1) [7, 8] as

d̂i = −i∂i + i
c

2

∑
j<i

(ε(xi − xj )− 1)ŝi,j + i
c

2

∑
j>i

(ε(xi − xj )+ 1)ŝi,j . (2)

Here a functionε(x) denotes a signature ofx,

ε(x) =
{
+1 for x > 0

−1 for x < 0.
(3)

Operatorŝi,j exchanges coordinates of theith and thej th particles, and satisfies

xi ŝi,j = ŝi,j xj .
For our latter convention we setŝj ≡ ŝj,j+1 for j = 1, 2, . . . , N − 1. One sees that these
operators satisfy the following identities;

[d̂i , d̂j ] = 0 (4a)

ŝ2
j = 1I (4b)

ŝj ŝj+1ŝj = ŝj+1ŝj ŝj+1 (4c)

[d̂i , ŝj ] = 0 for i 6= j, j + 1 (4d)

ŝj d̂j − d̂j+1ŝj = ic. (4e)

These relations indicate that the operators{d̂i , ŝj |16 i 6 N; 16 j 6 N − 1} represent the
degenerate affine Hecke algebra defined by Drinfeld [16].

From the commutativity of the Dunkl operators (4a), we can define the quantum integrals
of motion by

In =
N∑
i=1

π(d̂ni ) (5)

whereπ(·) indicates a projection onto a symmetric space, i.e. a bosonic space. The lowest
three conserved operators are computed as follows [8]

I1 =
N∑
i=1

(−i∂i) (6a)

I2 = H (6b)

I3 =
N∑
i=1

(−i∂i)
3+ 3c

∑
16i<j6N

δ(xi − xj )(−i∂i − i∂j ). (6c)

See that the Hamiltonian of the NLS model (1) is given from the Dunkl operators, and that
the integrals of motionIn commute withH. This fact proves the quantum integrability of
the NLS model (1) in the Liouville sense.
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As a preparation in constructing simultaneous eigenfunctions of the Dunkl operators
d̂i (2), we introduce the integral operatorŝQi [17] (1 6 i 6 N − 1) acting on arbitrary
functionsf (x1, . . . , xN) as

(Q̂if )(. . . , xi, xi+1, . . .) = f (. . . , xi+1, xi, . . .)− c
∫ xi−xi+1

0
f (. . . , xi − t, xi+1+ t, . . .)dt.

(7)

The partial differential operators−i∂i and the integral operatorŝQj satisfy the following
relations;

[−i∂i,−i∂j ] = 0 (8a)

Q̂2
j = 1I (8b)

Q̂j Q̂j+1Q̂j = Q̂j+1Q̂j Q̂j+1 (8c)

[−i∂i, Q̂j ] = 0 for i 6= j, j + 1 (8d)

Q̂j (−i∂j )− (−i∂j+1)Q̂j = ic. (8e)

One finds that the operators{−i∂i, Q̂j |1 6 i 6 N; 1 6 j 6 N − 1} also constitute the
degenerate affine Hecke algebra.

As a result, we have two representations for the degenerate affine Hecke algebra, (4)
and (8), and there is a correspondence as follows

d̂i
ŝj

}
⇐⇒

{−i∂i
Q̂j .

(9)

In the next section, we shall diagonalize the Dunkl operatorsd̂i (2). To this end, we shall
introduce the intertwining operator which maps thenon-localdifferential-difference operator
d̂i onto thelocal differential operator−i∂i .

3. Eigenfunction

We shall diagonalize the Dunkl operatorsd̂i (2) with a non-symmetric functionψ(x);

d̂iψ(x) = kiψ(x) for i = 1, 2, . . . , N (10)

where ki corresponds to the quasimomentum of theith particle. We assume that the
wavefunctionψ(x) ≡ ψ(x1, . . . , xN) is continuous inx ∈ RN . We note that the
eigenfunctionψ(x) is in fact non-symmetricin its argumentsx, and that the eigenfunction
9(x) of the NLS model (1) is then given by symmetrizingψ(x);

9(x) = Sym(ψ(x)). (11)

As a functionψ(x) satisfies the eigenvalue problem (10) with the Dunkl operator (2),
the symmetriceigenfunction9(x) becomes a simultaneous eigenfunction of the quantum
integrals of motionIn (5),

In9(x) = En9(x) (12a)

En =
N∑
i=1

kni . (12b)

We first consider the two-body caseN = 2 for simplicity. We set thenon-symmetric
eigenfunctionψ(x1, x2) of d̂1 and d̂2 as

ψ(x1, x2) = θ(x1 < x2)ψ1(x1, x2)+ θ(x2 < x1)ψ2(x1, x2) (13)
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whereθ(X) denotes

θ(X) =
{

1 if X is true

0 if X is false.

By substituting (13) into eigenvalue problems (10), we obtain [8] that each functionψ1 and
ψ2 has a form,

ψ1(x1, x2) = eik1x1+ik2x2 (14a)

ψ2(x1, x2) = k1− k2− ic

k1− k2
eik1x1+ik2x2 + ic

k1− k2
eik1x2+ik2x1. (14b)

The purpose of this letter is based on the observation that the two-body wavefunction
ψ(x1, x2) is written in a simple form with the integral operatorQ̂i (7) as

ψ(x1, x2) = (θ(x1 < x2)+ θ(x2 < x1)ŝ1Q̂1)e
ik1x1+ik2x2. (15)

As a generalization to theN -body case, we find that the eigenfunction of the Dunkl
operators is given by

ψ(x) = V̂ exp

( N∑
i=1

ikixi

)
(16)

whereV̂ is called the intertwining operator defined by

V̂ =
∑
w∈SN

θ(xw−1(1) < · · · < xw−1(N))ŝw−1Q̂w. (17)

Here w is the reduced decomposition in terms of the elementary transposition of each
element ofSN , and ŝw−1 andQ̂w respectively denotes as

ŝw−1 = ŝip . . . ŝi2 ŝi1 Q̂w = Q̂i1Q̂i2 . . . Q̂ip

where 16 i1, i2, . . . , ip 6 N − 1. This form of the wavefunction shows that the integral
operatorQ̂i (7) represents the scattering matrix between theith and(i + 1)th particles, and
the braid relation (8c) is based on that the scattering matrix of the NLS model satisfies the
Yang–Baxter relation which indicates the integrability of the model [18].

The fact that a function (16) becomes an eigenfunction of the Dunkl operator could be
given by proving an identity,

d̂i V̂ = V̂ (−i∂i). (18)

The operatorV̂ intertwines the two representations of the degenerate affine Hecke algebra,
(4) and (8). We thus obtained the operatorV̂ , which intertwines theδ-function gas and
free particle systems. The proof of (18) is rather straightforward. We recall that the Dunkl
operatord̂i (2) is written as

d̂ξ = −i∂ξ − ic
∑
α>0

(ξ, α)ŝαθ((x, α) < 0). (2′)

Here we useξ = εi for 1 6 i 6 N , andx = ∑N
i=1 xiεi with basesεi of RN . A set of

positive rootsR+ is defined asR+ = {εi − εj |1 6 i < j 6 N}, andα > 0 meansα ∈ R+.
The inner product is defined as(εi, εj ) = δij . As the operatorsQ̂i and−i∂j constitute the
degenerate affine Hecke algebra, we have [13]

Q̂w(−i∂ξ )Q̂w−1 = −i∂wξ − ic
∑
α>0

w−1α<0

(wξ, α)Q̂α. (19)
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Further, we note that

(∂iθ)(x1 < x2 < · · · < xN) = (δ(xi − xi−1)− δ(xi − xi+1))θ(. . . < xi−1 < xi+1 < · · ·)
(20)

δ(xi − xi+1)Q̂i = ŝi . (21)

Using relations (19)–(21) and a definition (2′) of the Dunkl operator, we obtain an
intertwining relation (18).

As we find that the Dunkl operator̂di (2) is intertwined with a momentum operator−i∂i
by the operatorV̂ (18), thenon-symmetricwavefunctionψ(x) is given by a superposition
of plain waves, exp(

∑
i ikixi). We note that the symmetrized eigenfunction9(x) (11), as

an eigenfunction of the conserved operatorsIn (12), is then given by

9(x) =
∑
w

Q̂w exp

( N∑
i=1

ikixi

)

=
∑
w

c(wk) exp

( N∑
i=1

ikwi xi

)
(22)

where

c(k) =
∏
α∈R+

(k, α)+ ic

(k, α)
.

See the appendix for explicit forms of the wavefunctionsψ(x) and9(x) up toN = 3.

4. Concluding remarks

We have defined the intertwining operatorV̂ (18) for the δ-function interacting gas; the
operatorV̂ intertwines the Dunkl operator̂dj and the partial differential operator−i∂j ,
which are two different representations of the degenerate affine Hecke algebra as shown in
(4) and (8).

We recall that the intertwining operator for the CSM model was studied in [19];

T̂i V̂C = V̂C∂i (23)

whereT̂i is the Dunkl operator for the rational Calogero model,

T̂i = ∂i + c
N∑
j=1
j 6=i

1

xi − xj (1− ŝi,j ). (24)

The explicit form of the intertwining operator̂VC is rather complicated [19]. It should be
noted that, while our Dunkl operatorŝdi (2) for the NLS model constitute the degenerate
affine Hecke algebra, the original Dunkl operatorT̂i is not a representation of the degenerate
affine Hecke algebra.

The eigenfunctions for the NLS model associated with the root systems of type-B and
type-G [20, 8, 21] could be constructed in the same manner. The lattice analogue of the
NLS model [22] could be studied by considering a deformation of the integral operator (7).
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Appendix. Explicit form of eigenfunctions

To clarify the notations in this letter, we give the explicit wavefunctionsψ(x) and9(x) for
simple cases,N = 2 andN = 3. Thenon-symmetricwavefunctionψ(x) is an eigenfunction
of the Dunkl operator̂di (2) as in (10), and thesymmetricfunction9(x) is a symmetrization
of ψ(x) and becomes an eigenfunction of the bosonic NLS model (1). Hereafter we use a
scattering functionS(i, j) and the plain waveχ(i1, i2, i3, . . .) as

S(i, j) = ki − kj + ic

ki − kj (A1)

χ(i1, i2, i3, . . .) = exp(ik1xi1 + ik2xi2 + ik3xi3 + · · ·). (A2)

(i) N = 2
• non-symmetric function;

ψ(x) = (θ(x1 < x2)+ θ(x2 < x1)ŝ1Q̂1)χ(1, 2).

• Symmetric function;

9(x) = S(1, 2)χ(1, 2)+ S(2, 1)χ(2, 1).

(ii) N = 3
• non-symmetric function;

ψ(x) = (θ(x1 < x2 < x3)+ θ(x2 < x1 < x3)ŝ1Q̂1+ θ(x1 < x3 < x2)ŝ2Q̂2

+θ(x2 < x3 < x1)ŝ1ŝ2Q̂2Q̂1+ θ(x3 < x1 < x2)ŝ2ŝ1Q̂1Q̂2

+θ(x3 < x2 < x1)ŝ1ŝ2ŝ1Q̂1Q̂2Q̂1)χ(1, 2, 3).

• Symmetric function;

9(x) = S(1, 2)S(1, 3)S(2, 3)χ(1, 2, 3)+ S(2, 1)S(1, 3)S(2, 3)χ(2, 1, 3)

+S(1, 2)S(1, 3)S(3, 2)χ(1, 3, 2)+ S(2, 1)S(3, 1)S(2, 3)χ(3, 1, 2)

+S(1, 2)S(3, 1)S(3, 2)χ(2, 3, 1)+ S(2, 1)S(3, 1)S(3, 2)χ(3, 2, 1).
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